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Introduction

In the era of personalized medicine, it is well-established that 
genetic variants amongst individuals result in differences in the 
metabolism and bioavailability of drugs, ultimately leading to 
variations in drug response and susceptibility to adverse drug 
reactions. In 1959, the term “pharmacogenetics” was first applied 
to describe this observation [1]. Since then, germline and somatic 
gene variants, as well as functional gene deficiencies, have been 
found to impact (i) drug pharmacokinetics (drug absorption, 
distribution, and metabolism), (ii) drug pharmacodynamics 
(interaction between drug and target), (iii) idiosyncratic reactions 
to drugs (e.g., a hypersensitivity reaction), and (iv) disease 
pathogenesis in response to specific drugs. Perhaps the most 
well-known pharmacogenetic association is Glucose 6-phosphate 
dehyrdrogenase (G6PD) deficiency. Inherited variants, almost 
entirely represented by missense mutations, lead to deficient 
enzyme activity, resulting in hemolytic anemia upon exposure 
to certain drugs [2]. By understanding how an individual’s 
genetic code impacts drug metabolism, absorption, and efficacy, 
providers can select the most appropriate drug and dose for each 
patient, individualizing care by placing the patient at the center of 
pharmaceutical decisions.

Pharmacogenetic testing refers to the evaluation of gene variants 

and their association with a particular drug. Pharmacogenomic 
testing is the ‘omics’ version of this concept – a comprehensive 
assessment of an individual’s genome to not only select the most 
appropriate drug(s), but to also maximize drug safety and efficacy. 
However, generating a strict divide between the definition of 
pharmacogenetics versus genomics is somewhat challenging, as 
these terms are often used interchangeably. In general, we have 
observed that testing exists on a spectrum, with the simplest 
end represented by PCR-based analysis of a single genetic 
variant, and the most complex end being complete genomic 
(and potentially transcriptomic, methylomic, etc.) sequencing. 
Most clinical tests lie in the middle of this spectrum, and even 
clinical laboratories with ‘pharmacogenomic’ platforms may 
not assay for novel variants or report variants of unknown 
significance. It thus becomes complicated to create a divide of 
where ‘-genetics’ ends and ‘-genomics’ begins. This article seeks 
to better define both pharmacogenetics and pharmacogenomics, 
highlight common examples of pharmacogenetic associations, 
and provide an overview of groups working to offer clinical testing 
recommendations.

Pharmacogenetics

In the United States, the Food and Drug Administration (FDA) 
has incorporated over 500 pharmacogenetic associations on the 
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labels for approximately 360 drugs [3], and in 2020, released a 
Table of Pharmacogenetic Associations with periodic updates [4]. 
These associations are categorized as (i) supporting therapeutic 
management recommendations, (ii) indicating a potential impact 
on patient safety or drug response, and (iii) demonstrating an effect 
on pharmacokinetic properties, offering providers a resource for 
pharmacogenetic associations and recommendations for testing 
and management [4]. In addition, the Clinical Pharmacogenetics 
Implementation Consortium (CPIC) is an international 
consortium that generates peer-reviewed, evidence-based clinical 
practice guidelines regarding the use of specific pharmacogenetic 
tests [5], and the Pharmacogenomics Knowledgebase (PharmGKB) 
grades levels of evidence for clinical actionability of gene-drug 
pairs [6]. Several commercially available and laboratory-developed 
tests are available to assay these gene-drug pairs by assessing single 
gene variants [7]. Gene panels have also been developed to assay 
a limited number of genes and their associated variants in a 
single assay, and largely represent targeted variant analysis with 
PCR-based methods or microarray technology [7]. These panels 
often assess pharmacogenetic interactions for a number of drug 
classes, including drugs used to treat psychiatric conditions, pain 
management, and cardiovascular conditions. While useful in the 
interrogation of established variants, an important limitation of 
targeted pharmacogenetic testing is that it is not designed to detect 
novel variants, which could have unpredictable effects on gene 
expression and protein production or function. The Association 
for Molecular Pathology has published recommendations 
for minimum sets of variants to be included in these clinical 
pharmacogenetic assays [8,9].

The vast majority of pharmacogenetic associations discovered 
to date deal with pharmacokinetics, primarily in the arena of 
drug-metabolizing enzymes. The cytochrome P450 superfamily 
of mixed function oxidases (CYPs), in particular, are the major 
system for oxidative metabolism of drugs. Sequencing of the 
human genome has revealed 57 CYP genes, which encode various 
CYP isoenzymes [10]. Importantly, the CYP genes are highly 
polymorphic, and variants that affect drug metabolism are seen 
in a significant portion of the population [11] with prevalence 
varying according to ancestry [12].

One such pharmacogenetic association is CYP2C19 and 
clopidogrel [13]. Clopidogrel is a drug used to reduce the risk 
of myocardial infarction (MI) in patients with acute coronary 
syndrome (ACS) or who have recently undergone a percutaneous 
coronary intervention (PCI). Once converted to its active 
metabolite, clopidogrel inhibits the P2Y

12
 receptor, irreversibly 

inhibiting platelet aggregation. Conversion to the active metabolite 
requires multiple oxidative steps, with CYP2C19 serving as a 
major contributor in this process [14,15]. Meta-analyses have 
demonstrated that “intermediate” and “poor” metabolizers of 
CYP2C19 have decreased serum active metabolite concentrations, 

and patients are at increased risk for major adverse cardiovascular 
events and stent thrombosis, compared to “normal” metabolizers 
[13,16,17]. Thus, alternative drug options are often recommended 
for these patients. Variants of CYP2C19 have also been associated 
with differences in the metabolism and effectiveness of proton 
pump inhibitors [18], used commonly to treat gastroesophageal 
reflux [19], and a number of platforms have been developed to 
assay the CYP2C19 gene.

An example of a genetic alteration affecting pharmacodynamics 
is vitamin K epoxide reductase complex 1 (VKORC1) and the 
anticoagulant drug warfarin. Warfarin therapy is clinically 
challenging due to its narrow therapeutic index and large 
variability in drug response between patients. Through the 
identification of common single nucleotide polymorphisms 
(SNPs), patients can be stratified into haplotypes that correlate 
with mRNA levels, and have been shown to account for 25% 
of the phenotypic availability in warfarin dosing [20,21]. In this 
case, the CPIC recommends an algorithm for warfarin dosing 
based on VKORC1 and CYP2C9 genotyping for both pediatric 
and adult populations [21]. Finally, there are a number of genetic 
associations with idiosyncratic reactions that have prompted 
CPIC recommendations for testing to prevent said adverse drug 
reactions, including hypersensitivity to abacavir with HLA-B*57:01 
[22], severe cutaneous adverse reactions to allopurinol with 
HLA-B*58:01 [23], and hypersensitivity to carbamazepine with 
HLA-B*15:02 [24].

Pharmacogenomics

As previously mentioned, an important limitation of 
pharmacogenetic testing is the inability to detect novel variants 
that may affect function. Only annotated, established variants 
being tested for will ultimately be detected. Another limitation is 
that multiple interacting genes, epigenetic changes, or alterations 
in gene expression may affect various stages of drug metabolism 
or efficacy. Pharmacogenomics takes a broader view, examining a 
number of genomic components and their role in drug response. 
Like pharmacogenetics, this can include genetic sequence 
variants, but can also include structural changes in chromosomes 
(e.g., translocations), epigenetic variants (e.g., methylation, 
acetylation), and changes in gene expression via alterations in 
coding and non-coding RNAs. High-throughput techniques have 
allowed for interrogation of the entire genome (or comprehensive 
sections of the genome) and an assessment of interacting gene 
networks affecting drug activity.

A paramount example is in the field of psychiatry, in which many 
genes are involved with processing and modulating the effects 
of psychotropic drugs. Serotonin reuptake inhibitor drugs are 
used to treat depression and anxiety disorders. Genetic variants 
in CYP2D6, CYP2C19, and CYP2B6 result in changes to drug 
metabolism, with more than 170, 35, and 45 variant alleles 
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reported, respectively [25]. In addition, two other genes – SLC6A4 
and HTR2A – have known pharmacogenetic associations. 
SLC6A4 encodes the presynaptic serotonin transporter (5-HTT), 
which recycles serotonin to terminate synaptic action. Reuptake 
inhibitor drugs bind to this receptor to block reuptake and 
enhance the synaptic effect of serotonin. Variants in the promoter 
region of SLC6A4 have been shown to differ in transport activity 
[26], and epigenetic alterations lead to changes in gene expression 
and activity [27]. HTR2A encodes the postsynaptic serotonin-2A 
receptor (5-HT

2A
), and promoter variants have also been associated 

with changes in gene expression [28].

Opioids are used to treat acute and chronic pain, and many of 
these drugs are metabolized by CYP2D6. Well over 100 alleles 
of CYP2D6 have been identified, including single nucleotide 
variants (SNVs), deletions, and copy number variants (CNVs) 
[29]. Commonly reported alleles are categorized into groups 
based on enzyme function and include normal function alleles 
(e.g., CYP2D6*1, *2, and *35), decreased function alleles (e.g., 
CYP2D6*9, *10, *17, *29, and *41), and no function alleles 
(e.g., CYP2D6*3, *4, *5, and *6). Increased copies of CYP2D6 
lead to increased function. An activity score can be calculated 
based on the predicted function of each allele, and allows for 
the classification of “ultrarapid”, “intermediate”, or “poor” 
metabolizers [30,31]. Clinical laboratories may not always perform 
complete sequencing of the entire CYP2D6 gene in order to 
analyze each known variant position, and instead test for common 
variants and copy number alterations. Because of this, rare or 
novel variants (with altered function) may be reported as a normal 
allele. Yet, until additional genomics-based studies are carried out 
to better define both rare and novel variants, their function may 
remain uncertain. In addition, the clinical impact and safety of 
opioids have been explored in relation to two additional genes – 
OPRM1 (mu receptor) and COMT (catechol-O-methyltransferase) 
[29]. Therapeutic recommendations for the use of genotyping 
prior to prescribing two opioids – codeine and tramadol – have 
been described by CPIC [29].

Studies have suggested that approximately 90-99% of the population 
may contain an actionable variant for a gene with an established 
drug association, and argue for preemptive pharmacogenomic 
testing [32,33]. In addition, the discovery-enabled capacity of 
pharmacogenomic testing with next-generation sequencing (NGS) 
methods may provide further benefit over traditional genotyping 
methods developed to evaluate variants, particularly for patients 
of genetic ancestries not widely represented in benchmark 
studies. Of course, a significant limitation of broader genomics 
methodologies is the identification of novel or rare variants with 
uncertain significance. Without thorough analysis and research, 
actionable clinical recommendations cannot be made. Medical 
specialties with the most relevance to, and thus those likely to see 
the largest benefit from, pharmacogenetic and pharmacogenomic 

testing include oncology, pain management, psychiatry, and 
populations at high risk for polypharmacy (e.g., geriatric patients). 
In oncology, chemotherapeutic drugs are often prescribed at very 
high concentrations, making toxicities and adverse drug events 
more likely, and the addictive nature of certain pain medications 
makes it important to establish upfront if a drug is likely to be 
useful before initiating treatment. Interactions between drugs, 
and genetic predispositions for increased or decreased drug 
metabolism, in the setting of polypharmacy is also of utmost 
importance. However, multiple barriers exist that affect the pace 
of pharmacogenomic testing implementation. These include the 
laboratory resources and staffing needs to establish NGS and 
data storage platforms, as well as the cost of those platforms, the 
complexity of test interpretation and reporting, the uncertainty of 
rare and novel variant function, gene nomenclature and reporting, 
clinician engagement, and concerns regarding reimbursement. 
Nonetheless, the progress towards pharmacogenomic testing 
methods represents an intriguing and evolving area within the 
field of personalized medicine.

Conclusion

Despite the challenges discussed herein, the integration 
of information gleaned from pharmacogenetic and 
pharmacogenomic testing into clinical practice holds immense 
promise for optimizing drug therapy, reducing adverse events, 
and ultimately improving patient outcomes. Moving forward, 
sustained collaboration between researchers, healthcare providers, 
and policymakers will be essential to the advancement and further 
implementation of these testing platforms. The journey towards 
precision pharmacotherapy is ongoing, and we anticipate a future 
where each patient is prescribed drugs tailored to their unique 
genetic makeup, ushering in a new era of personalized medicine.
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