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Introduction

The use of immunotherapy to treat malignancies was first 
explored in 1891 by William Bradley Coley, who injected 
streptococcal organisms to induce an infection, and indirectly 
treated bone cancer [1]. In 1977, Lloyd J. Old postulated that the 
immune system is able to distinguish cancer cells from normal 
cells as cancer cells are inherently unique in nature [2]. These 
pioneer concepts paved the way to the development of cancer 
immunotherapy as a standard therapeutic approach, with the 
development of ICIs as a key turning point to improving cancer 
outcomes in the modern era.

ICIs are monoclonal antibodies that indirectly trigger the immune 
system to target cancer cells by either stimulating activating 
receptors or blocking inhibitory receptors [3]. For example, as a 
key component of self-tolerance, cytotoxic T-lymphocye-associated 
antigen 4 (CTLA-4) downregulates the immune response to 
prevent attack of host cells [4]. Ipilimumab, a monoclonal antibody 
blocking CTLA-4, was the first ICI to be approved by the Food 
and Drug Administration (FDA) for the treatment of metastatic 
melanoma [5]. Shortly thereafter, monoclonal antibodies against 
programmed cell death protein 1 (PD-1) or its ligand (PD-L1) 

showed promising results in a myriad of cancer types. PD-L1 can 
be found on the surface of some tumor cells while PD-1 is found 
on the surface of T-lymphocytes. Inhibitory signals emitted by the 
formation of the PD1/PD-L1 complex suppress the proliferation 
and activation of cytotoxic T-lymphocytes [6,7]. This mechanism 
allows for cancer cells expressing PD1 to evade the immune 
response.

While ICIs have exhibited promising results by reducing tumor 
burden and improving survival rates, only about one-third of 
patients exhibit a durable response [8]. Predicting response to 
ICIs has proven challenging due to the complex nature of the 
interaction between tumor microenvironment and host immune 
response. Currently, PD-L1, tumor mutational burden (TMB), 
and microsatellite instability (MSI) are clinically validated 
biomarkers in some cancer types to predict response to ICIs, but 
unfortunately, they are far from perfect. Recent developments 
have explored the roles of other biomarkers, including tumor 
infiltrating lymphocytes, gut microbiota, and POLE mutations 
outside the exonuclease domain [9-11]. However, their applicability 
to date remains limited.

Better understanding of what clinical factors may predict response 
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to ICIs is critical, as it may be the basis for further investigation 
of the underlying molecular rationale. In a single-institution 
retrospective study of 297 solid tumor patients treated with ICIs, 
we found that preserved performance status of ECOG 0-1 and 
family history of cancer were associated with improved response 
to ICIs [12]. The presence of bone metastasis was associated with 
worse response to ICIs. Other clinical characteristics such as age, 
race, sex, smoking history, and comorbidities were not significantly 
associated with differences in response to ICIs. However, given 
the large number of clinical variables in this dataset, the analysis 
required enormous human labor to appropriately capture and 
analyze, and additionally there are important variables we 
could not accurately capture. We urgently need more efficient 
methodology to perform such analysis going forward.

As seen in other fields, artificial intelligence (AI) has the potential 
to advance medical research and provide a platform for more 
comprehensive and effective investigation. For instance, AI can 
more effectively capture data from electronic medical record, such 
as imaging and laboratory results, to streamline research processes, 
and to ensure data accuracy. For both radiology and pathology, 
AI (machine and deep learning) has demonstrated the potential 
to improve screening, detection, and diagnosis of cancer [13-16]. 
Although to date, there is limited evidence to support using AI in 
predicting therapeutic response, recent reports of its application 
provide proof of concept that such strategies are on the horizon.

Deep and Machine Learning: Pathology and 
Clinical Models

Several studies have investigated whether deep learning can 
predict cancer immunotherapy response. Using a multi-center, 
international retrospective cohort of 2799 patients with gastric 
cancer, Jiang Y, et al. (2023) trained and validated a biology-
guided deep learning model that utilized diagnostic CT images 
to classify tumor microenvironment (TME) and predict prognosis 
[17]. Immunohistochemistry evaluation of established immune 
and stromal markers was used to define four predicted TME 
classes. In an independent cohort of 303 patients with advanced 
gastric cancer, this deep learning model of TME classes was able to 
predict response to PD1 inhibitors better than PD-L1 expression, 
and a significantly higher accuracy for response prediction was 
observed using a simple interpretable model that combined TME 
classes and PD-L1 expression.

Li Y, et al. (2022) used a retrospective cohort of 7868 non-
small cell lung cancer (NSCLC) patients who received first 
line ICI therapy to develop a machine learning-based survival 
model, which achieved C-indices of 0.672 and 0.612 for overall 
survival (OS) and progression-free survival (PFS), respectively 
[18]. Significant predictors of OS and PFS were identified using 
explain-ability techniques and these predictors, such as ECOG, 
PD-L1 expression levels, and albumin, aligned with published 

literature and what has been observed in clinical practice. Wu Y, et 
al. (2023) used machine-learning algorithms to develop prediction 
models using a cohort of 2538 patients with NSCLC, transitional 
cell carcinoma, or renal cell carcinoma who received atezolizumab 
in 8 different clinical trials [19]. With the best overall predictive 
performance, the random forest (RF) model had a receiver 
operating characteristic curve (AUC) value of 0.786 (95% CI: 
0.754-0.818) for predicting mortality [19]. Using a retrospective 
cohort of 976 patients with metastatic, EGFR/ALK negative 
NSCLC treated with ICIs, Saad MB, et al. (2023) developed an 
ensemble deep learning model based on pretreatment CTs to 
predict survival outcomes after ICI treatment [20]. The Deep-
CT model demonstrated better prediction performance than 
risk factors like PD-L1 expression, smoking status, and histology, 
especially when integrated with these risk factors into a composite 
model [20]. This composite model had an improved OS C-index 
of 0.75 compared to the clinical model with a C-index of 0.7020. 
Although further validation is required, these findings serve as 
early evidence that deep machine learning can indeed improve 
prognostication and prediction of ICI response [20].

Deep and Machine Learning: Radiomic Models

Radiomics involves the use of mathematical methods to extract 
measurable quantitative features from imaging under the 
hypothesis that such features correlate to a tumor’s biological 
properties [21]. Several studies have developed radiomics-
based models intended to predict response to ICI therapy. In 
a multicenter study, Zhao J, et al. (2023) used a retrospective 
cohort of 240 patients with advanced breast cancer to develop 
and validate a radiomics-based model to predict ICI response [22]. 
Clinicopathologic features and pretreatment contrast-enhanced 
CT imaging from these patients were assigned to training and 
independent validation cohorts [22]. The radiomics model 
demonstrated significantly better performance than the clinical 
model with an AUC of 0.994 (95% CI: 0.988 to 1.000) in the 
training and 0.920 (95% CI: 0.824 to 1.000) in the validation 
set compared to an AUC of 0.672 for training and 0.634 for 
validation set in the clinical model. With significant differences 
in PFS in both the training and validation sets, this radiomics 
model was able to stratify patients receiving ICIs into high- and 
low-risk groups. These findings show the promising potential 
of using such radiomics-based models in predicting treatment 
response to ICIs.

Ventura D, et al. (2023) developed a model of radiomics features 
used to classify response and overall progression in 44 patients 
with advanced NSCLC who received first-line ICIs [23]. PET-
positive tumor volumes of all lesions were segmented to extract 
baseline PET and CT data from which radiomics features were 
extracted. They found an AUC of 0.69 for predicting response 
and 0.75 for predicting overall progression. Zhu Z, et al. (2023) 
conducted a single-center retrospective study in which they 
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developed a pre-treatment CT-based predictive radiomic model 
based on a cohort of 185 patients with advanced lung cancer 
and cross-validated it in a test cohort of 48 patients [24]. An 
attention-based multiple-instance learning model was used to 
weight radiomic features that were extracted from a number 
of intrapulmonary lesions. Machine learning-based predictive 
models were then developed using both radiomic and clinical 
features. Kaplan-Meier analysis of the radiomic-based predictive 
models clearly stratified patients as having either classifier-
predicted durable clinical benefit or non-durable clinical benefit 
(HR = 2.40-2.95, p < 0.05). By integrating clinical features 
such as age, clinical stage, presence of bone metastasis, line of 
therapy, and the use of pembrolizumab, the performance of the 
radiomic-only model was significantly enhanced.  Tonneau M, et 
al. (2023) used a multi-center cohort of 642 advanced NSCLC 
patients treated with ICIs to extract radiomics features from pre-
treatment imaging [25]. This cohort was divided into a discovery 
cohort of 512 patients and a validation cohort of 130 patients. 
The predictive value of radiomics, PD-L1 expression, and clinical 
variables, such as age, ECOG status, treatment line, and smoking 
history, was estimated using cross-validated multivariable models. 
When using only clinicopathologic features to define standard-of-
care prognostic scores, a combination of clinical factors and PD-

L1 expression served as the best clinical prognostic factor for PFS 
at 6 months with an AUC of 0.66 (95% CI: 0.61 to 0.70) in the 
discovery cohort and 0.62 (95% CI: 0.53 to 0.72) in the validation 
cohort as compared to clinical factors alone or PD-L1 expression 
alone. After CT imaging harmonization and machine learning 
generalization, a risk prediction model combining clinical factors 
and deep radiomics was found to be generalizable by reaching an 
AUC of 0.67 and 0.63 in the discovery and validation cohorts 
respectively. These findings support the potential of machine 
and deep learning radiomics as a future method of predicting 
response to ICIs [26].

Future Directions 

Recent advances in AI application to predict therapeutic 
outcomes suggest there is potential for an accelerated path to 
better understanding how to select the best candidates for ICI 
treatment going forward. Future AI models should be multimodal 
in nature, encompassing information from various sources of 
clinical and biomarker data from large datasets, to maximize 
the predictive potential of such models (Figure 1). With further 
clinical validation, such precision AI models may aide everyday 
clinical practice by predicting optimal treatment strategies, leading 
to better patient outcomes.

Conclusion 

While ICIs have changed the therapeutic landscape for many 
patients with cancer, predicting which patients will truly benefit 
remains a significant challenge. While clinical factors and 
biomarkers have been individually identified for ICI treatment 
selection in some cancers, they generally lack the high sensitivity 
and specificity for broader implication.  The potential of early 

AI application witnessed to date has been promising, and should 
further optimize ICI selection for cancer patients in the near 
future.
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Figure 1: Framework for use of artificial intelligence to predict response to immune checkpoint inhibitors for clinical decision-making.
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