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Introduction

Occurring in more than 50% of cases, rearrangements of members 
of the ETS-gene family are the most common genetic alterations 
in prostate cancer (PCa) [1]. Among them, the predominant is 
the 21q22.2-3 that involves the Transmembrane Protease Serine 
2 (TMPRSS2) and ETS-related gene (ERG). Detectable in almost 
50% of prostate cancer biopsies from Caucasians, TMPRRS2-
ERG genes fusion is less frequent in African-American and Asian 
men (27-31%) [2]. Moreover, the rearrangement is commonly 
identified in 5-30% of high-grade PIN (HGPIN) lesions, 
which classifies the lesion as an early event during prostate 
carcinogenesis [3-5]. TMPRSS2-ERG rearrangement characterizes 
as well other prostatic histotypes -such as small cell carcinoma of 
the prostate (pure or mixed with acinar carcinoma)- where it’s 
found in about 45% of cases and where its presence underscores 
the prostatic origin of the malignancy in the differential diagnosis 
of a metastatic small cell carcinoma of unknown primary origin 
[6,7]. Functionally, ERG expression has been associated to 
tumor aggressiveness by promoting local invasion and metastatic 
progression of the disease through the transcriptional control of 
targeted genes in PCa cells [8-10]. Less clear is the role of ERG 
in the early stage of prostate tumorigenesis since in vitro and in 
vivo studies demonstrate that ERG is not sufficient to trigger the 
malignant transformation of the prostate epithelium [9-14].

Leveraging organoid technology to investigate 
ERG functions

Prostate organoids (PrOs) are cell culture models constituted 
by proliferating wild type adult prostate progenitors that self-
assemble to reconstitute the correct basal-luminal architecture 
surrounding the lumen of adult prostate epithelium. Notably, 
PrOs are characterized by a very stable genome and dependence on 
testosterone for luminal lineage differentiation and lumenogenesis 
[15]. Doxycycline inducible expression of exogenous ERGMet40 
in mouse prostate organoids (mPrOs) determines the expansion 
of the luminal compartment and contraction of the basal layer, 
closely resembling the histologic appearance of HGPIN. However, 
ERG+ organoids grow slowly compared to control lines and they 
are likely to get lost after a few passages if kept in full medium. 
Surprisingly, in sharp contrast to wild-type prostate organoids 
that are dependent on exogenous epidermal growth factor (EGF, 
0.5 ng/mL) to survive, ERG+mPrOs grow in the absence of 
EGF [16], supporting the thesis that ERG+HGPIN cells could 
escape the quiescence that largely characterizes adult prostate 
tissue homeostasis and proliferate in the absence of physiologic 
stimuli. HGPIN is not the only intraductal proliferative lesion of 
the prostate. Intraductal carcinoma (IDC) is a clinically aggressive 
form of prostatic carcinoma characterized by a lumen-spanning 
proliferation of neoplastic prostate epithelium
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within a preserved basal layer and it is associated with a high 
Gleason score (>7), large tumor volume, extra prostatic extension, 
positive lymph node status, and increased recurrence risk [17-
19]. Most (about 75%) IDC lesions have the TMPRSS2-ERG 

rearrangement [20] and a similar percentage is found in atypical 
intraductal cribriform proliferations (AIP) that histologically 
appear more ominous than HGPIN, but do not fulfil the criteria 
of classic IDC [21] (Figure 1).

Recent studies have shown that prostate cancer with coexistent 
IDC and/or invasive cribriform carcinoma is associated with a 
higher percentage of genomic alterations than prostate cancer 
without these patterns [22,23], and that such genomic events 
cluster in specific chromosomal regions associated with aggressive 
disease such as deletions of 8p, with the involvement of the 
NKX3.1 gene [22]. In addition to its role as a transcription factor, 
NKX3.1 protein contributes to genome stability by favoring 
DNA damage repair in prostate epithelium [24-28] while ERG 
is known to promotes DNA double strand breaks (DSBs) [29-
31]. In prostate progenitors, we demonstrated that ERG pose a 
major threat to genomic stability by promoting the proteasome 
degradation of NKX3.1 protein and the consequent accumulation 
of ERG-induced DNA damage, which remains sub-lethal [16]. 
These findings could reasonably help explain, at least in part, 
the increased rate of genomic alterations and highly malignant 
behavior of IDC and invasive cribriform carcinoma characterized 
by TMPRSS2-ERG rearrangement and NKX3.1 loss.

Clinical relevance of ETS genes expression

As ERG expression in prostate cancer cells leads to DNA DSB 

[30,31], synthetic lethality strategies of therapeutic intervention 

should be considered in patients with tumors harboring ETS 

related gene rearrangement [32]. sTOPARP-B trial showed 

anti-tumor activity of the PARP-inhibitor olaparib in patients 

with specific DNA repair gene defects (DRDs) [33]. Similar 

conclusions have been obtained by the PROFOUND trial for 

patients having somatic or germinal DRDs [34,35]. GALAHAD 

(a phase II trial) demonstrated a significant response rate of 

mCRPC patient with BRCA mutations treated with niraparib 

[36]. Finally, again in patients presenting with DRDs, promising 

results have been obtained by TRITON2 and TALAPRO-1 

trials with the use of rucaparib and talazoparib, respectively [37-

39]. As shown by Brenner JC, et al. (2011) treatment of ERG 

overexpressing cells with the PARP inhibitor olaparib not only 

decreased ERG-mediated cell invasion and intravasation, but 

also inhibited growth in mouse xenograft models [30]. Further in 

vitro work showed resistance to radiation of cells overexpressing 

ERG, which was reverted by inhibition of PARP [31,40]. However, 

clinical trials failed to identify differences in the response rate of 

ETS (mainly ERG) positive and negative mCRPC treated with 

PARP inhibitor veliparib and the androgen biosynthesis inhibitor 

abiraterone [41]. Similarly, ERG fusion status was not prognostic 

in patients with intermediate risk prostate cancer treated with 

radiation [42], although the presence of ERG rearrangement and 

PTEN loss was independently associated with recurrence-free 

survival in patients undergoing brachytherapy [43]. Future studies 

might clarify the potential role of ERG in selecting patients who 

could benefit more from a PARP inhibitor therapy, alone or in 

combination with other therapies. Along with PARPi, in the last 

few years immunotherapy has become increasingly important in 

the therapeutic plan of oncological patients, in particular the use 

of immune checkpoint-inhibitors (ICIs). Programmed death-1 

(PD-1) and its ligand PD-L1 are transmembrane glycoproteins 

expressed by different types of immune cells, and, mostly PD-L1, 

by tumor cells including those of prostate cancer [44]. The PD-1/

PD-L1 pathway leads to the inactivation of PD-1 expressing cells, 

mainly CD8+ cytotoxic T cells, thus favoring tumor immune 

escape [44]. Accordingly, increasing attention has been dedicated 

to immunohistochemical evaluation of PD-1/PD-L1 proteins as 

predictor factors of ICIs efficacy. Therapeutic strategy based on 

Figure 1: Atypical intraductal proliferation (AIP) intermingled with intraductal carcinoma (IDC), both with dense cribriform pattern 
(A, H&E x10). Low (B, x10) and high (C, x40) magnification of ERG immunohistochemistry showing diffuse nuclear positivity.
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ICIs proved to be effective for various cancer types including non-

small-cell lung cancer [45], renal cell carcinoma [46,47], urothelial 

cancer [48,49], colorectal cancer [50], breast cancer [51,52] and 

melanoma [53,54], upon accurate stratification of patients. 

Contrariwise, ICIs resulted poorly effective in prostate cancer 

patients, likely dependent by the strong immunosuppressive 

tumor microenvironment (TME), the lower infiltration of T-cells 

and the reduced tumor mutation burden (TMB) [55]. Recent 

clinical trials, however, have demonstrated excellent responses 

to ICIs and/or their combinations with other agents of prostate 

cancer characterized by the biallelic loss of CDK12, high tumor 

mutation burden, high microsatellite instability (MSI-h) and 

mismatch repair-deficient (dMMR) [55,56]. ERG expression can 

also contribute to increase genome instability and tumor mutation 

burden in PCa cells [16]. In this scenario, it is interesting to note 

that a concordant IHC status of ERG with a “nodular” pattern of 

PDL1 has been described [44,57].

Further studies are needed to investigate the role of ERG fusions 

with regards to PD-L1/PD-1 expression, immune infiltration, and 

ICIs response.

Conclusion

One critical aspect may be the criteria adopted for ERG 
stratification. Rather than “positive” or “negative”, a quantitative 
biparametric assessment by IHC of the different levels of ETS 
protein expression and the relative percentage of positive cells 
might help to better interpret the response of ETS-positive 
tumors to specific clinical protocol [58]. Artificial intelligence 
is fueling the field of computational quantitative pathology, 
which will contribute substantially to solving issues like this. 
Machine learning-based approaches will improve the accuracy and 
reproducibility of histopathological analyses, while also making 
them faster and, overall, quantitative [59]. Further clinical studies 
will be needed to understand the complex relationship between 
the expression of ETS genes and the clinical relevance of agents 
acting on the DNA damage response and immune activity. In the 
meantime, the goal of preclinical research will be to increasingly 
define the molecular mechanisms that undermine susceptibility 
to PARP and IC inhibitors, with the aim of discovering new 
therapeutic strategies and expanding the potential spectrum of 
treatable patients (Figure 2).

Figure 2: Prostate carcinoma (A, H&E x20) and lymph node metastasis (B, H&E x20) positive for ERG (A’, B’; IHC x20). Note that 
ERG shows different degrees of expression within the same specimen and between distinct specimens (created with BioRender.com).
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